Improved Multi-Sensor Satellite-Based Aboveground Biomass Estimation by Selecting Temporally Stable Forest Inventory Plots Using NDVI Time Series

نویسندگان

  • Mikhail Urbazaev
  • Christian Thiel
  • Mirco Migliavacca
  • Markus Reichstein
  • Pedro Rodriguez-Veiga
  • Christiane Schmullius
  • Eric J. Jokela
چکیده

Accurate estimates of aboveground biomass (AGB) are crucial to assess terrestrial C-stocks and C-emissions as well as to develop sustainable forest management strategies. In this study we used Synthetic Aperture Radar (SAR) data acquired at L-band and the Landsat tree cover product together with Moderate Resolution Image Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time series data to improve AGB estimations over two study areas in southern Mexico. We used Mexican National Forest Inventory (INFyS) data collected between 2005 and 2011 to calibrate AGB models as well as to validate the derived AGB products. We applied MODIS NDVI time series data analysis to exclude field plots in which abrupt changes were detected. For this, we used Breaks For Additive Seasonal and Trend analysis (BFAST). We modelled AGB using an original field dataset and BFAST-filtered data. The results show higher accuracies of AGB estimations using BFAST-filtered data than using original field data in terms of R2 and root mean square error (RMSE) for both dry and humid tropical forests of southern Mexico. The best results were found in areas with high deforestation rates where the AGB models based on the BFAST-filtered data substantially outperformed those based on original field data (RBFAST = 0.62 vs. Rorig = 0.45; RMSEBFAST = 28.4 t/ha vs. RMSEorig = 33.8 t/ha). We conclude that the presented method shows great potential to improve AGB estimations and can be easily and automatically implemented over large areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Live Forest Carbon Dynamics with a Landsat-based Curve-fitting Approach

Direct estimation of aboveground biomass with spectral reflectance data has proven challenging for high biomass forests of the Pacific Northwestern United States. We present an alternative modeling strategy which uses Landsat’s spatial, spectral and temporal characteristics to predict live forest carbon through integration of stand age and site index maps and locally calibrated Chapman-Richards...

متن کامل

Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data

Accurate estimation of aboveground biomass and carbon stock has gained importance in the context of the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. In order to develop improved forest stratum–specific aboveground biomass and carbon estimation models for humid rainforest in northeast Madagascar, this study analyzed texture measures derived from WorldVie...

متن کامل

Mapping Tropical Forest Biomass by Combining ALOS-2, Landsat 8, and Field Plots Data

This research was carried out in a dense tropical forest region with the objective of improving the biomass estimates by a combination of ALOS-2 SAR, Landsat 8 optical, and field plots data. Using forest inventory based biomass data, the performance of different parameters from the two sensors was evaluated. The regression analysis with the biomass data showed that the backscatter from forest o...

متن کامل

Non-destructive Method for Estimating Biomass of Plants Using Digital Camera Images

Abstract Plant growth and biomass assessments are required in production and research. Such assessments are followed by major decisions (e.g., harvest timing) that channel resources and influence outcomes. In research, resources required to assess crop status affect other aspects of experimentation and, therefore, discovery. Destructive harvests are important because they influence treatment s...

متن کامل

Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data

In the present study, the suitability of optical ASTER satellite data (with 9 spectral bands) for estimating the biomass of boreal forest stands in mineral soils was tested. The remote sensing data were analysed and tested together with standwise forest inventory data. Stand volume estimates were converted to aboveground tree biomass using biomass expansion factors, and the aboveground biomass ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016